Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Tropical forests are increasingly threatened by deforestation and degradation, impacting carbon storage, climate regulations and biodiversity. Restoring these ecosystems is crucial for environmental sustainability, yet monitoring these efforts poses significant challenges. Secondary forests are in a constant state of flux, with growth depending on multiple factors.Remote sensing technologies offer cost‐effective, scalable and transferable solutions, advancing forest restoration monitoring towards more accurate, efficient and real‐time data analysis and interpretation. This review provides a comprehensive evaluation of the current state and advancements in remote sensing technologies applied to monitoring tropical forest restoration.Synthesis and applications: This review brings together the state of the art of remote sensing technologies, such as very‐high‐resolution RGB imagery, multi‐ and hyperspectral imaging, lidar, radar and thermal‐infrared technologies and their applicability in monitoring forest restoration. In conclusion, this review emphasizes the potential of remote sensing technologies, coupled with advanced computational techniques, to enhance global efforts towards effective and sustainable forest restoration monitoring.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical DataDeveloping the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species. Data from Sentinel-2 optical imagery, ERA-5 climate data, SRTM-DEM imagery, and simulated GEDI data were selected for the characterization of diversity in four study areas. The integration of ancillary data can improve biodiversity metrics predictions. Random Forest (RF) regression models were suitable for estimating tree species diversity indices from remote sensing variables. From these models, we generated diversity index maps for the entire Cerrado using all GEDI data available in orbit. For all models, the structural metric Foliage Height Diversity (FHD) was selected; the Renormalized Difference Vegetation Index (RDVI) was also selected in all species diversity models. For the Shannon model, two GEDI variables were selected. Overall, the models indicated performances for species diversity ranging from (R2 = 0.24 to 0.56). In terms of RMSE%, the Shannon model had the lowest value among the diversity indices (31.98%). Our results suggested that the developed models are valuable tools for assessing species diversity in tropical savanna ecosystems, although each model can be chosen based on the objectives of a given study, the target amount of performance/error, and the availability of data.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Lianas, woody vines acting as structural parasites of trees, have profound effects on the composition and structure of tropical forests, impacting tree growth, mortality, and forest succession. Remote sensing could offer a powerful tool for quantifying the scale of liana infestation, provided the availability of robust detection methods. We analyze the consistency and global geographic specificity of spectral signals—reflectance across wavelengths—from liana‐infested tree crowns and forest stands, examining the underlying mechanisms of these signals. We compiled a uniquely comprehensive database, including leaf reflectance spectra from 5424 leaves, fine‐scale airborne reflectance data from 999 liana‐infested canopies, and coarse‐scale satellite reflectance data covering 775 ha of liana‐infested forest stands. To unravel the mechanisms of the liana spectral signal, we applied mechanistic radiative transfer models across scales, establishing a synthesis of the relative importance of different mechanisms, which we corroborate with field data on liana leaf chemistry and canopy structure. We find a consistent liana spectral signal at canopy and stand scales across globally distributed sites. This signature mainly arises at the canopy level due to direct effects of more horizontal leaf angles, resulting in a larger projected leaf area, and indirect effects from increased light scattering in the near and short‐wave infrared regions, linked to lianas' less costly leaf construction compared with trees on average. The existence of a consistent global spectral signal for lianas suggests that large‐scale quantification of liana infestation is feasible. However, because the traits responsible for the liana canopy‐reflectance signal are not exclusive to lianas, accurate large‐scale detection requires rigorously validated remote sensing methods. Our models highlight challenges in automated detection, such as potential misidentification due to leaf phenology, tree life history, topography, and climate, especially where the scale of liana infestation is less than a single remote sensing pixel. The observed cross‐site patterns also prompt ecological questions about lianas' adaptive similarities in optical traits across environments, indicating possible convergent evolution due to shared constraints on leaf biochemical and structural traits.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Constructed landscapes are composed of diverse communities, representing different social strata and perspectives of a place. In turn, the risks associated with inhabiting unpredictable environments are disproportionately felt across urban and rural landscapes. The mitigation and management of risks often fall on farming and smallholder communities, influencing decentralized strategies. These themes are explored in an archaeological context surrounding the confluence of the Upper Usumacinta and Lacantún Rivers in the neotropical Maya lowlands of Chiapas, Mexico. LiDAR data collected recently with the GatorEye unoccupied aerial vehicle (UAV) and NASA’s GLiHT system have aided in the mapping of the archaeological urban centre of Benemérito de las Américas, Primera Sección and the surrounding landscape. These data have revealed coupled settlement with land management, in the form of wetland fields, reservoirs, and riverways, emphasizing the interconnectivity of household practice and land use in the region.more » « less
-
Airborne laser scanning has proven useful for rapid and extensive documentation of historic cultural landscapes after years of applications mapping natural landscapes and the built environment. The recent integration of unoccupied aerial vehicles (UAVs) with LiDAR systems is potentially transformative and offers complementary data for mapping targeted areas with high precision and systematic study of coupled natural and human systems. We report the results of data capture, analysis, and processing of UAV LiDAR data collected in the Maya Lowlands of Chiapas, Mexico in 2019 for a comparative landscape study. Six areas of archaeological settlement and long-term land-use reflecting a diversity of environments, land cover, and archaeological features were studied. These missions were characterized by areas that were variably forested, rugged, or flat, and included pre-Hispanic settlements and agrarian landscapes. Our study confirms that UAV LiDAR systems have great potential for broader application in high-precision archaeological mapping applications. We also conclude that these studies offer an important opportunity for multi-disciplinary collaboration. UAV LiDAR offers high-precision information that is not only useful for mapping archaeological features, but also provides critical information about long-term land use and landscape change in the context of archaeological resources.more » « less
-
Protecting and enhancing forest carbon sinks is considered a natural solution for mitigating climate change. However, the increasing frequency, intensity, and duration of droughts due to climate change can threaten the stability and growth of existing forest carbon sinks. Extreme droughts weaken plant hydraulic systems, can lead to tree mortality events, and may reduce forest diversity, making forests more vulnerable to subsequent forest disturbances, such as forest fires or pest infestations. Although early warning metrics (EWMs) derived using satellite remote sensing data are now being tested for predicting post-drought plant physiological stress and mortality, applications of unmanned aerial vehicles (UAVs) are yet to be explored extensively. Herein, we provide twenty-four prospective approaches classified into five categories: (i) physiological complexities, (ii) site-specific and confounding (abiotic) factors, (iii) interactions with biotic agents, (iv) forest carbon monitoring and optimization, and (v) technological and infrastructural developments, for adoption, future operationalization, and upscaling of UAV-based frameworks for EWM applications. These UAV considerations are paramount as they hold the potential to bridge the gap between field inventory and satellite remote sensing for assessing forest characteristics and their responses to drought conditions, identifying and prioritizing conservation needs of vulnerable and/or high-carbon-efficient tree species for efficient allocation of resources, and optimizing forest carbon management with climate change adaptation and mitigation practices in a timely and cost-effective manner.more » « less
-
Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tree species diversity in local communities, which remains to be tested at the global scale. To address this gap, we analyzed global forest inventory data and revealed that the relationship between tree species richness and EcM tree proportion varied along environmental gradients. Specifically, the relationship is more negative at low latitudes and in moist conditions but is unimodal at high latitudes and in arid conditions. The negative association of EcM tree proportion on species diversity at low latitudes and in humid conditions is likely due to more negative plant-soil microbial interactions in these regions. These findings extend our knowledge on the mechanisms shaping global patterns in plant species diversity from a belowground view.more » « lessFree, publicly-accessible full text available June 13, 2026
An official website of the United States government
